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Lecture 23
Lecturer: Ronitt Rubinfeld Scribe: Jessica Wu, Guang Cui

In this lecture, we covered PCPs (probabilistically checkable proofs), which give a way of writing
a proof in a format where a verifier can check that the proof is correct without going line by line. In
other words, the verifier can check that the proof is correct by looking only at a constant number of
locations of the proof. Specifically, we showed that SAT (and thus NP) is a subset of PCP(n3, 1) by
using arithmetization and several instances of tests that are based on Freivald’s Matrix Multiplication
checking algorithm.

1 Probabilistically Checkable Proofs

1.1 The PCP Model

The polytime verifier can look at the input, a random string, and a proof given by a fixed function.

Definition 1 L ∈ PCP (r, q) if there exists P-TIME Turing machine V such that

1) ∀x ∈ L ∃π such that Prrandom strings[V , π accepts] = 1

2) ∀x /∈ L ∀π′ such that Prrandom strings[V , π′ accepts] < 1
4

and V uses ≤ r(n) random bits and makes q(n) 1-bit queries to π.

In other words, L is in the PCP class if there is some polynomial time verifier V so that for every x
in the language, there is some way of writing the proof π that convinces the verifier to accept, and for
every x not in the language there is no way to write the proof π that makes the verifier convince more
than a quarter of the random strings.

Note that the 1
4 here is arbitrary, and any constant less than 1 would work. The parameters cor-

respond to how long the random string needs to be, and how many queries the verifier needs to see of
the proof. The existence of PCP s with good parameters for r and q have been linked to hardness of
approximation problems.

1.2 Relation to NP

It’s clear that SAT ∈ PCP (0, n), where the proof could just be to write down the truth assignment
for every variable of the satisfying assignment. By querying n bits, the verifier could figure out the
satisfying assignment and check that it is correct in polynomial time.
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More generally, NP ⊆ PCP (0, poly(n)). We could write down the NP proof, the verifier could look
at it and verify that it is legal, and we would be set.

Can we reduce the number of query bits with an increase in random bits?

Theorem 2 SAT ⊆ PCP (O(n3), O(1))

We will prove this today.

Corollary 3 NP ⊆ PCP (O(n3), O(1))

Theorem 4 NP ⊆ PCP (O(log n), O(1))

This won’t be covered, but it is a result of a recursive technique which uses Theorem 2 as a base
case.

1.3 3-SAT

The 3-SAT problem is as follows:

• F = ∧Ci such that Ci = (yi1 ∨ yi2 ∨ yi3) where yij ∈ {x1...xnx1...xn}

• Is F satisfiable?

A first crack at proving 3-SAT would be to use the NP proof for SAT. We set the proof and protocol
to be

π = settings of the satisfying assignment a

V : pick random clause Ci, check if setting a satisfies Ci.

V checks that the clause is satisfied by the fixed assignment. If a satisfies C then Pr[ V succeeds] = 1.

However, if a doesn’t satisfy C, there exists some clause i such that a doesn’t satisfy Ci, and the prob-
ability that the verifier is able to find such a clause could be very low. The Pr[ V finds unsatisfying Ci] ≥
1
m , and since m can be very large we would need to repeat O(m) times to find the clause.

So, this solution doesn’t work.

1.4 Arithmetization of SAT

We can arithmetize a Boolean formula f using the following transformations:

boolean formula F arithmetic formula A(F ) over Z2

T 1
F 0
Xi Xi

Xi 1−Xi

α ∧ β α · β
α ∨ β 1− (1− α)(1− β)

α ∨ β ∨ γ 1− (1− α)(1− β)(1− γ)

For example,

• (x1 ∨ x2) ∧ x3 −→ (1− (1− x1)(1− x2)) · (1− x3)

• x1 ∨ x2 ∨ x3 −→ 1− (1− x1)(1− (1− x2))(1− x3) = 1− (1− x1)x2(1− x3). Observe that when
we arithmetize a clause with 3 literals, the max degree of A(F ) is 3.

Theorem 5 F satisfied by assignment a iff A(a) = 1.
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1.5 Strange Arithmetization

Going back to our formulas for 3-SAT, we are going to arithmetize each clause separately and think
of it as a vector, rather than multiply them all together (to limit the degree).

For x = (x1...xn), set
C(x) = (Ĉ1(x), Ĉ2(x), ...)

where the components of the vector are the complements of each clause Ci, which evaluate to 0 if x
satisfies Ci. The motivation for taking the complement here is that it’s easier to check if all the clauses
evaluate to 0 rather than 1 in our vector, and all values should be 1 if the assignment is indeed satisfying.

Each Ĉi(x) is degree ≤ 3 polynomial in X, and the verifier knows the coefficients of the arithmetiza-
tion (but not the assignment). We need to convince the verifier that C(a) = (0, 0, ..., 0) without sending
assignment a.

An idea: How can we apply Freivald’s test (HW 1)? Assume there exists some little birdie who tells
V dot products of C(a) with random vectors mod 2.

Theorem 6 (Freivald’s Test)

- If vectors a ̸= b then Prr∈{0,1}n [a · r ̸= b · r] ≥ 1
2 .

- If matrices A ·B ̸= C then Prr∈{0,1}n [A ·B · r ̸= C · r] ≥ 1
2 .

Proof Pair vectors that differ in coordinate i such that ai ̸= bi or A · Bij = Cij (also similar to the
proof of orthogonality).

1.6 Freivald’s test on C(a)

Suppose trustworthy birdie tells me, on my request r, dot products of C · r.

Fix a:
(Ĉ1(a), ..., Ĉm(a)) · (r1...rm) =

∑
riĈi(a) mod 2

By an application of Frievald’s with b = 0

Pr[
∑

riĈi(a) ≡ 0 mod 2] =

{
1 if ∀i Ĉi(a) = 0 (C(a) satisfied)

1/2 otherwise (C(a) not satisfied)

But why would we believe the birdie? We need to hard code the answers to the birdie into the proof.

1.7 Believing the Birdie

Remember that we choose the ri’s (so we don’t have to worry about that), we know the coefficients
of polynomials in the Ĉi’s, and polynomials of Ĉi’s are degree at most 3 in ai’s.

Here’s an example for clarity: (x1 ∨ x2 ∨ x3)(x1 ∨ x2) when arithmetized becomes

((1− x2 + x1x2 + x2x3 − x1x2x3), (1− x1 + x1x2))

=⇒ ((x2 − x1x2 − x2x3 + x1x2x3), (x1 − x1x2))

Upon doing an inner product with a random vector (r1, r2), this becomes

r1 · (x2 − x1x2 − x2x3 + x1x2x3) + r2 · (x1 − x1x2)

= 0 · 1 + r2 · x1 + r1 · x2 − (r1 + r2) · x1x2 − r1 · x2x3 + 0 · x1x3 + r1 · x1x2x3
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after separating by terms xi. In general, for any 3-SAT expression,∑
riĈi(a) = Γ +

∑
i

aiαi +
∑
i,j

aiajβij +
∑
i,j,k

aiajakγijk (mod 2)

Where we’re replacing αi → xi, βij → yij , γijk → zijk, which has no relation to the 3-SAT variables.
V knows Γ, αi, βij , γijk, since they depend on ri’s and coefficients of polynomials. They don’t depend

on ai’s, are computed by V, and are values ∈ {0, 1} since we are working in mod 2. V does not know
the ai’s (formerly the xi’s).

Crucially, the max total degree is 3. A couple definitions before we describe the proof:

Definition 7 Outer product w = u ◦ v if wij = ui · vj

u =

v

w

Sort of like the opposite of an inner product in some sense, when you multiply two polynomials you’re
doing an outer product.

Definition 8

A: Fn
2 → F2 A(x) =

∑
i aixi = aT · x

B: Fn2

2 → F2 B(y) =
∑

i,j aiajyij = (a ◦ a)T · y

C: Fn3

2 → F2 C(z) =
∑

i,j,k aiajakzijk = (a ◦ a ◦ a)T · z

Note that the verifier knows the x, y, z.

1.8 Proof Π

Now we are finally ready for the proof! Proof Π will give the complete truth tables Ã, B̃, C̃ for all
possible settings of x, y, z, which the verifier will need to check are actually correct and valid A, B, and
C.

This is quite a long proof (2n
3

size), and V only really needs to know A, B, C at some locations, but
the other entries will help in checking.

Essentially, every time you call the birdie, you ask for a different value. The verifier needs to check
two things in Π.

1. Ã, B̃, C̃ are of the right form:

• all are linear functions (we can only test close-to-linear but can from previous lecture use the
self-corrector to get the corresponding linear function)

• they correspond to the same assignment a (test that the self-corrections are consistent with
Ã(x) = aT · x =⇒ B̃(y) = (a ◦ a)T · y =⇒ C̃(z) = (a ◦ a ◦ a)T · z

2. Check that a is a SAT assignment. In particular, that all Ĉi’s evaluate to 0 on a.

Remember that it needs to do all of this in a constant number of queries!
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1.9 Solving 2.

We call the self-corrector to obtain a, a◦a, a◦a◦a. We don’t know a but it represents the assignment.

To test satisfiability, we pick r ∈ Zn
2 , compute Γ, αi(x), βij , γi,j,k(x, y, z), query the proof to get

SC − Ã(α) = w0 and corresponding w1, w2, and finally verify that 0 = Γ + w0 + w1 + w2.

If Ĉi didn’t evaluate to 0, then by Frievald’s, there’s ≤ 1/2 chance it passes, so our test is ≥ 1/2
accurate. To get higher accuracy, we simply run this k times.

1.10 Solving 1.

First we test that Ã, B̃, C̃ are all 1/8-close to linear via a linearity test and fail if it’s not. We’ve
shown earlier this is possible using constant queries.

Now, we access Ã etc. via the self-corrector on all inputs. The question is, how can we trust that
the self-correcting values are consistent with other (b actually equals a ◦ a)?

Again, we’ll use more Frievald’s!
We test that:

SC − Ã(x1) · SC − Ã(x2) =
∑
i

aix1i ·
∑
j

ajx2j =
∑
ij

aiajx1ix2j = SC − B̃(x1 ◦ x2)

.
And the corresponding expression for C̃. Clearly, if b = a ◦ a, then the test passes. If not, we’ll use

commutative properties of outer products and Frievald’s to upper bound the chance it passes by 1/4.

Again, a similar argument holds for C̃.

Whew, that was a lot, but we’re finally done! We have a proof of 3-SAT where a verifier can check
only a constant number of bits and then accept or reject the proof with high probability of being correct.
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